李 韧
出生年月: 1970.08
职  称: 研究员
学  位: 博士
专  业: 大气物理与大气环境
主要工作: 大气物理

李韧,男,博士,研究员,博士生导师

Tel 0931-4967718

Email: liren@lzb.ac.cn

1996年毕业于兰州大学,同年6月份在原中国科学院兰州高原大气物理研究所工作。2002年获得中国科学院寒区旱区环境与工程研究所气象学专业硕士学位,2005年获得中国科学院寒区旱区环境与工程研究所大气物理与大气环境专业博士学位。2005年9月-2009年4月,中国科学院寒区旱区环境与工程研究所博士后。20131-2月份,法国ERCAR培训学习;2013年12月-2014年12月为日本国立环境研究所访问学者。主要从事太阳能分布及变化、青藏高原地面能量收支、辐射气候及寒区陆面过程的研究工作。

曾参与的课题有:“八五”攀登计划“青藏高原形成演化、环境变迁与生态系统研究”;国家重点基础研究发展规划项目“我国重大气候灾害的形成机理和预测理论研究”;国家重点基础研究发展规划项目“青藏高原形成演化及其环境、资源效应” 3.1.2子专题;作为项目骨干参加的课题有自然科学基金项目“气溶胶与云滴的内混合对光学特性的影响研究”;自然基金面上项目:青藏高原多年冻土活动层水热动态过程及其与大气间水热交换研究(40471026);自然科学重点项目:青藏高原典型多年冻土区地气水热交换过程研究(40830533);科技部基础性工作项目:青藏高原多年冻土本底调查(2008FY110200)。

负责的项目,自然科学基金面上项目:青藏高原地表冻融循环过程中活动层热力参数的观测研究(41271081,执行时段2009-2011年,经费45万),青藏高原典型地段活动层热物理参数研究(40871037,执行时段2013-2016年,经费85万); 青藏高原腹地活动层导热率分布格局及区域差异研究(41671070,执行时段2017-2020年,经费80万);青藏高原与环北极典型多年冻土陆面关键参数变化机理及空间格局的区域差异(42071093,执行时段2021-2024年,经费56万)。国家重大科学研究计划(973):我国冰冻圈动态过程及其对气候、水文和生态的影响机理与适应对策-四课题专题(2007CB411504,执行时段2007-2011年,经费50万);国家重大科学研究计划(973): 冰冻圈变化及其影响研究-三课题专题(2013CBA01803;执行时段2013-2017年,经费50万冰冻圈科学国家重点实验室自主课题:青藏高原典型地段土壤热力学参数的研究执行时段2011-2013年,经费60万。横向课题:青海三江源自然保护区生态保护和建设工程生态监测—冻土环境监测(一期执行时段2007-2011年,经费40万,二期2017-2020,经费40万)。

Publications

1.       Li R, Zhao L, Wu TH, Ding YJ, Wang QX, Yao JM, Wu XD, Hu GJ, Xiao Y, Du YZ, Zhu XF, Qin YH, Yang SH, Bai R, Du EJ, Liu GY, Zou DF, Qiao YP, Shi JZ. , 2019. Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau. Agricultural and Forest Meteorology, 264:235-246.

2.       Li RZhao LWu THet al. 2016. The impacts of net long-wave radiation on the surface soil  thermal regimes over the QinghaiTibetan Plateau, ChinaEnviron Earth Sci75271-282.

3.       Li R, Wu TH, Zhao L, Xie CW, Xiao Y, Hu GJ, Du YZ. 2015. Investigation on the soil thermal conductivity of different land surface patterns in the northern Qinghai-Tibetan Plateau,China. GEO Quebec, NO548.

4.       Li R, Zhao L, Wu TH, Ding YJ, Xiao Y, Hu GJ, Zou DF, Li WP, Yu WJ, Jiao YL, Qin YH. 2014. The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China. Environ Earth Sci, 72(6):2091-2099.DOI 10.1007/s12665-014-3117-9.

5.       Li R, Zhao L, Wu TH, Ding YJ, Xiao Y, Jiao YL, Qin YH, Xin YF, Du EJ, Liu GY.2014. Investigating soil thermodynamic parameters of the active layer on the northern Qinghai-Tibetan Plateau. Environ Earth Sci, 71(2): 709-722.DOI 10.1007/s12665-013-2473-1

6.       Li R, Zhao L, Ding Y J, et al. 2012. Temporal and spatial variations of the active layer along the Qinghai-Tibet   Highway in a permafrost region. Chin Sci Bull, 57(35): 4609-4616. doi: 10.1007/s11434-012-5323-8

7.       Li R, Zhao L, Ding Y J, et al. 2010. Monthly ratios of PAR to global solar radiation measured at northern Tibetan Plateau,China. Sol. Energy, 84(6):964-973. doi:10.1016/j.solener.2010.03.005

8.       Li R, Zhao L, Wu TH, et al. 2013. Temporal and spatial variations of global solar radiation over the Qinghai–Tibetan Plateau during the past 40 years. Theor Appl Climatol, 113: 573–583. DOI 10.1007/s00704-012-0809-5

9.       Li R, Zhao L, Ding Y J, et al. 2010. A study on soil thermodynamic characteristics of avtive layer in northern Tibetan Plateau. Chinese Journal of Geophysics, 53(5):1060-1072

10.    Li R, Zhao L, Ding Y J. 2008. The effect of the Global Radiation Budget on Seasonal Frozen Depth in the Tibetan Plateau. NiNth InterNatioNal CoNfereNCe oN Permafrost, P1061-1065.

11.    Wu TH, Zhao L, Li R, et al. 2013. Recent Ground Surface Warming and Its Effects on Permafrost on the Central Qinghai-Tibet Plateau. Int. J. Climatol.33: 920-930. DOI: 10.1002/joc.3479

12.    Li R, Zhao L, Wu TH, et al. 2013. A study on thermodynamic characteristics at different underlying surface in northern Tibetan Plateau. Acta Energiae Solaris Sinica, 34(6):1076-1084

13.    Li R, Zhao L, Wu TH, et al. 2013. Soil thermal regime of active layer in Wudaoliang region of the Yangzi River source. Arid Land Geography, 36(2):277-284

14.    Li R, Zhao L, Ding Y J, et al. 2011. Impact of surface energy variation on thawing processes within active layer of permafrost. Journal of Glaciology and Geocryology, 33(6): 1235-1242 (in Chinese with English abstract)

15.    Li R, Zhao L, Ding Y J, et al. 2011. Variations of surface effective radiation and its effect on superficial ground temperatures on Tibetan Plateau. Journal of Glaciology and Geocryology, 33(5): 1022-1032 (in Chinese with English abstract)

16.    Li R, Zhao L, Ding Y J, Xiao Y. 2011. A Study of the Effect of Global Radiation and other factors on Seasonal Maximum Frozen Depth in the Tibetan Plateau. 978-1-4244-9689-1/11/$26.00 ©2011 IEEE.

17.    Li R, Zhao L, Ding YJ, et al. 2012. Variation characteristics of global radiation over the Tibetan Plateau during the past 40 years. Journal of Glaciology and Geocryology, 34(6):1319-1327.

18.    Li R, Zhao L, Ding Y J, et al. 2009. The Climatic Characteristics of the Maximum Seasonal Frozen Depth in the Tibetan Plateau. Journal of Glaciology and Geocryology,  31(6):1050-1056 (in Chinese with English abstract).

19.    Li R, Zhao L, Ding Y J, et al. 2009. The condition of atmospheric quality over Wudaoliang. Journal of mountain Science, 27(4)411-417 (in Chinese with English abstract).

20.    Li R, Zhao L, Ding Y J, et al. 2009. The effect of global radiation budget on seasonal frozen depth in the Tibetan Plateau. Journal of Glaciology and Geocryology, 31(3):422-430 (in Chinese with English abstract).

21.    Li R, Zhao L, Ding YJ, et al. 2007. The features of each components in the surface heat balance equation over Wudaoliang Northern Tibetan Plateau. Journal of Mountain Science, 25(6): 664670 (in Chinese with English abstract).

22.    Li R, Ji GL, Yang W, Zhao L. 2007. The observation study on PAR coefficient over northern part of Tibetan Plateau, Acta Energiae Solaris Sinica, 28(3):241-247 (in Chinese with English abstract)

23.    Li R, Ji GL, Yang W, Zhao L. 2007. Calculate the ultraviolet radiation over Wudaoliang with temperature and water vapor departures. ACT ENERGIA SOLARIS SINICA, 28(2):113-118 (in Chinese with English abstract)

24.    Li R, Ji GL, Yang W, et al. 2006. Parameterization of effective radiation over the Qinghai-Tibet Plateau. Acta Energiae Solaris sinica, 27(3):274-278 (in Chinese with English abstract)

25.    Li R, Yang W, Ji GL, Zhao L. 2005. The 40a variational characteristics of surface heating field over Wudaoliang the northern Tibetan Plateau. Acta Energiae Solaris Sinica, 26(6):868-873 (in Chinese with English abstract)

26.    Li R, Ji GL, Li SX, et al. 2005. Soil heat condition discussion of Wudaoliang region. Acta Energiae Solaris Sinica, 26(3):299-304 (in Chinese with English abstract)

27.    Li R, Ji GL, Yang W. 2005. Retrieve aerosol optical information from atmospheric broad-band transmittance on clear sky. Acta Energiae Solaris Sinica26(2): 150-156 (in Chinese with English abstract)

28.    Li R, Ji GL. 2004. The radiative effect of aerosol in Dunhuang area. Acta Energiae Solaris Sinica, 25(3): 320-324 (in Chinese with English abstract)

29.    Li R, Ji GL, Yang W. 2005. Inter annual change of global solar radiation over Wudaoliang region. Plateau Meteorology, 24(2):173-177 (in Chinese with English abstract)

30.    Li R, Ji GL. 2004. Aerosol features over northern Tibetan Plateau. Plateau Meteorology, 23(4):501-505 (in Chinese with English abstract)

31.    Li R, Ji G L, Yang W. 2004. The statistical characters of influencing factors of diffuse irradiance on the clear sky days in Dunhuang region. Plateau Meteorology, 23(1):116-122 (in Chinese with English abstract)

32.    Li R, Ji GL. 2003. The Seasonal Variation of Aerosol Optical Depth in Dunhuang Area. Plateau Meteorology, 22(1):84-87 (in Chinese with English abstract)

33.    Du YZ, Li R*, Zhao L, Yang CS, Wu TH, Hu GJ, Xiao Y, Zhu XF, Yang SH, Ni J, Ma JJ .2020. Evaluation of 11 soil thermal conductivity schemes for the permafrost region of the central Qinghai-Tibet Plateau. Catena, 193:104608. doi.org/10.1016/j.catena.2020.104608.

34.    Yang SH, Li R*, Wu TH, Hu GJ, Xiao Y, Du YZ, Zhu XF, Ni J, Ma JJ, Zhang YX, Shi JZ,   Qiao YP. 2020. Evaluation of reanalysis soil temperature and soil moisture products in permafrost regions on the Qinghai-Tibetan Plateau. Geoderma, 377:114583. 10.1016/j.geoderma.2020.114583.

35.    Yang SH, Li R*, Wu TH, Wu XD, Zhao L, Hu GJ, Zhu XF, Du YZ, Xiao Y, Zhang YX, Ma JJ, Du EJ, Shi JZ, Qiao YP.2021. Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau. Geoderma, 401:115330.

36.    Ma JJ, Li R*, Liu HC,Wu TH, et al. 2020. A review on the development of study on hydrothermal characteristics of active layer in permafrost areas in Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology2020421):195-204. ( in Chinese with English abstract)

37.    Xiao Y, Zhao L, Dai YJ, Li R, Pang QQ, Yao JM. 2013. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau. Cold Regions Science and Technology, 87(1):68-77

38.    Du EJ, Zhao L, Li R. 2009. The Application of  ground penetration radar to permafrost investigation in Qilian  Mountains. Journal of Glaciology and Geocryology, 31(2):364-371 (in Chinese with English abstract)

39.    Zhao L, Li R, Ding Y J. 2008. Simulation on the soil water-thermal characteristics of the active layer in Tanggula Range. Journal of Glaciology and Geocryology, 30(6):930-937(in Chinese with English abstract)

40.    Hu GJ, Zhao L, Li R, Wu XD, Wu TH, Xie CW, Zhu XF, Hao JM. 2020. Estimation of ground temperatures in permafrost regions of the Qinghai-Tibetan Plateau from climatic variables. Theoretical and Applied Climatology, 1401081-1091.

41.    Yuan LM, Zhao L, Li R, Hu GJ, Du EJ, Qiao YP, Ma L. 2020. Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai–Tibet plateau. Science of the Total Environment,712:136392.

42.    Cheng G D, Zhao L, Li R, et al. 2019. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau (in Chinese). Chin Sci Bull, 64: 2783–2795

43.    Hu GJ, Zhao L, Li R, Wu XDWu TH, Xie CW, Zhu XF, Hao JM.2020. Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theoretical and Applied Climatology,139:983-993.

44.    Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Su YQ, Hao JM.2019. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau. Theoretical and Applied Climatology (2019) 138:1457–1470.

45.    Wang YX, Zhao L, Li R, et al. 2011. A study of factors which control variation of permafrost table. Journal of Glaciology and Geocryology, 33(5):1033-1039 (in Chinese with English abstract)

46.    Xiao Y, Zhao L, Li R, et al. 2011. Applicability of CoLM Model(Single-point) on Permafrost Regions of the Qinghai-Xizang Plateau. Journal of Mountain Science, (5):633-640 (in Chinese with English abstract)

47.    Zhao L, Li R, Ding YJ, et al. 2011. Soil Thermal regime in Qinghai-Tibet Plateau and its adjacent regions during 1977-2006. Advances in Climate Change research, 7(5): 307-316 (in Chinese with English abstract)

48.    Shi W, Nan ZT, Li R, et al. 2010. Support vector machine based soil mapping of typical permafrost area in the Qinghai-Tibet Plateau. Acta Pedologica Sinica, 48(3): 461—469 (in Chinese with English abstract)

49.    Sun L C, Zhao L, Li R, et al. 2010. Basic characteristics of the photosynthetical active radiation in Xidatan, Qinghai-Xizang Plateau. Journal of Glaciology and Geocryology, 32(6):1136-1143 (in Chinese with English abstract)

50.    Sun LC, Zhao L, Li R, et al. 2010. The influence of snow cover on the surface albedo and ground temperature. Journal of Mountain Science, 28(3):266-273 (in Chinese with English abstract).

51.    Xiao Y, Zhao L, Li R, et al. 2010. The characteristics of surface albedo in permafrost regions of northern Tibetan Plateau. Journal of Glaciology and Geocryology, 32(3):480-488 (in Chinese with English abstract)

52.    Hu GJ, Zhao L, Li R, et al. 2013. The water-thermal characteristics of frozen soil under freeze-thaw based on Coup Model. SCIENTIA GEOGRAPHICA SINICA, 33(3):356-362

53.    Liu Y, Zhao L, Li R. 2013. Simulation of the soil water-thermal features within the active layer in Tanggula Region, Tibetan Plateau, by Using SHAW model. Journal of Glaciology and Geocryology, 35(2):280-290

54.    Hu GJ, Zhao L, Li R, Wu TH, Pang QQ, Xiao Y, Qiao YP, Shi JZ (2015) Modeling Hydrothermal Transfer Processes in Permafrost Regions of Qinghai-Tibet Plateau in China. Chin. Geogra. Sci. 25(6):713-727. doi: 10.1007/s11769-015-0000-0

55.    Hu GJ, Zhao L, Li R, Wu TH, Pang QQ, Wu XD, Jiao YP, Shi JZ (2014) Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions. Soils, 46(2)355-320.

56.    Sun LC, Zhao L, Li R, Yao JM, Liu Y, Qiao YP, Jiao KQ (2014) Effects of precipitation on the permafrost ground surface energy fluxes. Journal of Lpngdong University, 25(1):41-46.

57.    Du YZ, Li R, Wu TH, Xi Y, Hu GJ. 2015. Study of soil thermal conductivity: research status and advances. Journal of Glaciology and Geocryology, 37(4): 1067-1074.

58.    Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Xie CW, Pang QQ, Xiao Y, Li WP, Qiao YP, Shi JZ. 2015. Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau. ScienceChina: Earth Sciences, 58(12): 2309–2326, doi: 10.1007/s11430-015-5197-0

59.    Hu Guojie, Zhao Lin, Wu Xiaodong, Li R, Wu Tonghua, Xie Changwei, Qiao Yongping, Shi Jianzong, Cheng Guodong. 2015. An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China. Journal of Arid Land, doi: 10.1007/s40333-015-0058-4.

60.    Liu GY, Zhao L, Li R, Wu TH, Jiao KQ, Ping CL.2015. Permafrost Warming in the Context of Step-wise Climate Change in the Tien Shan Mountains,China. Permafrost and Periglac. Process., DOI: 10.1002/ppp.1885

61.    Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Xie CW, Qiao YP, Shi JZ, Cheng GD. 2015. New Fourier-series-based analytical solution to the conduction-convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux. International Journal of Heat and Mass Transfer. DOI10.1016/j.ijheatmasstransfer.2015.11.078

62.    Du EJ, Zhao L, Wu TH, Li R, Yue GY, Wu XD, Li WP, JiaoYL, Hu GJ, Qiao YP, Wang ZW, Zou DF, Liu GY. The relationship between the ground surface layer permittivity and active-layer thawing depth in a Qinghai–Tibetan Plateau permafrost area. Cold Regions Science and Technology2016 126 5560

63.    Wu XD, Fang HB, Zhao L, Wu TH, Li R, Ren ZW, Pang QQ, Ding YJ.2014. Mineralisation and changes in the fractions of soil organic matter in soils of the permafrost region, Qinghai-Tibet   Plateau,China. Permafrost and Periglac. Process., 25:35-44. DOI: 10.1002/ppp.1796

64.    Qin YH, Wu TH, Li R, Xie CW, Qiao YP, Chen H, Zou DF, Zhao LL. Application of ERA Product of Land Surface Temperature in Permafrost Regions of QinghaiXizang Plateau. Plateau Meteorology, 2015, 34(3):666-675.

65.    Qin YHWu THLi RXie CW, Zou DF, Zhang LL, Wang TY, Yu WJ, Wang WH The applicability of ERA-Interim land surface temperature dataset to map the permafrost distribution over the Tibetan PlateauJ]. Journal of Glaciology and Geocryology201537( 6) : 15341543Hu GJ, Zhao L, Li R, Wu XD, Wu TH, Xie CW, Zhu XF, Su YJ.2019. Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products. Geoderma, 2019, 337:893-905.

66.    Hu GJ, Zhao L, Li R, Wu XD, Wu TH, Zhu XF, Pang QQ, Liu GY, Du EJ, Zou DF, Hao JM, Li WP.2019. Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models. Atmospheric Research 220 (2019) 155-168.

67.    Hu GJ, Zhao L, Li R, Wu XDWu TH, Xie CW, Zhu XF, Hao JM (2019) Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau. Theoretical and Applied Climatology, https://doi.org/10.1007/s00704-019-03008-2.

68.    Yuan LM, Zhao L, Li R, Hu GJ, Du EJ, Qiao YP, Ma L (2020) Spatiotemporal characteristics of hydrothermal processes of the active layer on the central and northern Qinghai-Tibet plateau. Science of the Total Environment,712:136392.

69.    Wang TY, Wu TH, Wang P, Li R, Xie CW, Zou DF. Spatial distribution and changes of permafrost on the Qinghai-Tibet Plateau revealed by statistical models during the period of 1980 to 2010. Science of the Total Environment,2019, 650:661-670.

70.    Cheng GD, Zhao L, Li R, et al. 2019. Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau (in Chinese). Chin Sci Bull, 64: 2783-2795

71.    Bai R, Li R, Wu Tonghua, Du Yizhen.2019. Air moisture condition and change trend in Northeast China, 1979-2016. Journal of Glaciologu and Geocryology, 41(2): 1-7. (in Chinese with English abstract)

72.    Yang SHWu THLi et al2018 Spatial-temporal changes of the near-surface soil freeze-thaw status over the Qinghai-Tibetan Plateau Plateau Meteorology37(1):43-53. (in Chinese with English abstract)

73.    Liu WH, Xie CW, Zhao L, Li R, Liu GY, Wang W, Liu HR, Wu TH, Yang CQ, Zhang YX,Zhao SC (2021) Rapid expansion of lakes in the endorheic basin on the Qinghai-Tibet Plateau since 2000 and its potential drivers. Catena, 197:104942.

74.    Zhao L, Hu GJ, Wu XD, Wu TH, Li R, Pang QQ, Zou DF, Du EJ, Zhu XF (2021) Dynamics and characteristics of soil temperature and moisture of active layer in the central Tibetan Plateau. Geoderma,400:115083.

75.    Yang SH, Li R*, Wu TH, Hu GJ, Xiao Y, Du YZ, Ni J.2019. The variation characteristics of different freeze-thaw status in the near surface and the relationship with temperature over the Qinghai-Tibet Plateau Journal of Glaciology and Geocryology201941( 6) : 1377 1387(in Chinese with English abstract)

76.    Sun LC, Zhao L, Li R, Xiao Y. 2020. Seasonal Changes and Major Influencing Factors of Surface Albedo in the Permafrost regions of the Qinghai-Tibet Plateau HinterlandChina. Mountain Research 381):9-18. (in Chinese with English abstract)

77.    Wang WH, Wu TH, Chen YN, Li R, Xie CW, Qiao YP, Zhu XF, Hao JM, Ni J .2019. Spatial variations and controlling factors of ground ice isotopes in permafrost areas of the central Qinghai-Tibet Plateau. Science of the Total Environment, 2019,688:542-554.

78.    Hu GJ, Zhao L, Wu XD, Li R, Wu TH, Su YQ, Hao JM .2019. Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau. Theoretical and Applied Climatology (2019) 138:1457-1470. https://doi.org/10.1007/s00704-019-02888-8.

79.    Wang WH, Wu TH, Zhao L, Li R, Xie CW, Qiao YP, Zhang HW, Zhu XF, Yang SH, Qin YH, Hao JM. 2018. Hydrochemical characteristics of ground ice in permafrost regions of the Qinghai-Tibet Plateau. Science of the Total Environment, 626:366-376.

80.    Wang WH, Wu TH, Zhao L, Li R, Zhu XF, Wang WR, Yang SH, Qin YH, Hao JM. 2018. Exploring the ground ice recharge near permafrost table on the central Qinghai-Tibet Plateau using chemical and isotopic data. Journal of Hydrology, 560:220-229.

81.    Yang C, Wu TH, Wang JM, Yao JM, Li R, Zhao L, Xie CW, Zhu XF, Ni J, Hao JM. 2019. Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under Clear-Sky Conditions. Remote Sens. 2019, 11, 416; doi:10.3390/rs11040416

82.    Yang C, Wu TH, Wang JM, Yao JM, Li R, Zhao L, Xie CW, Zhu XF, Ni J, Hao JM .2019. Estimating Surface Soil Heat Flux in Permafrost Regions Using Remote Sensing-Based Models on the Northern Qinghai-Tibetan Plateau under Clear-Sky Conditions. Remote Sens. 2019, 11, 416:1-26; doi:10.3390/rs11040416

83.    Hu GJ, Zhao L, Zhu XF, Wu XD, Wu TH, Li R, Xie CW, Hao JM .2020. Review of algorithms and parameterizations to determine unfrozen water content in frozen soil. Geoderma, 368:114277, DOI: 10.1016/j.geoderma.2020.114277.

 

liren.jpg