吴晓东
出生年月: 1981.01
职  称: 研究员/副站长
学  位: 博士
专  业: 自然地理学
主要工作: 寒区生态

职务: 冰冻圈与全球变化研究室副主任、青藏高原冰冻圈科学观测研究站副站长

   贯:安徽庐江       研究方向:多年冻土区生态学

   话:0931-4967391   电子邮件: wxd565@163.com

 

主要学习经历:

1998.9-2002.7 安徽科技学院,学士

2002.9-2005.6 中国科学院昆明动物研究所,硕士

2005.9-2008.6 中国科学院南京地理与湖泊研究所,博士

 

工作经历

l  2008.7-2009.6 中国科学院南京地理与湖泊研究所,湖泊与环境国家重点实验室,助研

l  2009.7 -2010.7 云南大学自然科学研究院,亚洲国际河流中心,讲师

l  2010.8-2012.6至今,中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室,青藏高原冰冻圈科学观测研究站,博士后

l  2012.7-2013.12 中国科学院寒区旱区环境与工程研究所,冰冻圈科学国家重点实验室,青藏高原冰冻圈科学观测研究站,助研

l  2014.1-2018.12 中国科学院西北生态环境资源研究院,冰冻圈科学国家重点实验室,青藏高原冰冻圈科学观测研究站,副研

l  2015.8-2016.7  南佛罗里达大学,文理学院,访问学者

l  2019.1至今,中国科学院西北生态环境资源研究院,冰冻圈科学国家重点实验室,青藏高原冰冻圈科学观测研究站,研究员

 

主持和参加课题

l   国家自然科学基金项目,蒙古多年冻土区植被和景观多样性变化过程和机理(国际合作重点项目), 项目编号,32061143032,主持,  执行时间:2021-2025

l  中国科学院西部之光重点实验室项目,高纬度和高海拔多年冻土退化对土壤有机质分解和输移的影响及其机制, 执行时间:2021-2023

l  国家自然科学基金项目,北极陆地植被和多年冻土环境变化及其气候效应(重点基金项目), 项目编号,41941015,主持执行时间:2020-2023

l  国家自然科学基金项目,三江源地区河流生源物质的迁移及其通量变化规律,项目编号,91547119,执行时间:2016-2018

l  国家自然科学基金项目,青藏高原多年冻土区沼泽草甸和草甸CH4N2O的释放及机制,项目编号,41871060,执行时间:2019-2022

l  国家自然科学基金项目,三江源地区河流生源物质的迁移及其通量变化规律,项目编号,91547119,执行时间:2016-2018

l  国家自然科学青年项目,小湾水库澜沧江干流浮游生物时空分布:影响机制与模拟,项目编号,41001032,执行时间:2011-2013

l  中国科学院西部之光面上项目,青藏高原典型多年冻土区土壤有机碳的生物地球化学循环特征,执行时间:2013-2016

l  中国博士后科学基金一等资助,青藏高原多年冻土区活动层厚度对土壤有机碳垂向分布的影响,执行时间:2011-2012

 

另外,参加中国科学院先导专项、科技部基础调查专项、国家自然科学基金重点项目等多个项目。

 

目前主要研究方向:

多年冻土区(包括北极、蒙古国、青藏高原)冻土与植被、土壤、气候的变化过程及机制研究。

 

科研奖励

1. 2017年施雅风冰冻圈和环境基金青年科学家奖,个人获奖

2. 2010年中国科学院王宽诚博士后工作奖励,个人获奖

3. 2008年江苏省科技进步二等奖,排名第六

 

发表论文:

第一和通讯(包括共同通讯)作者论文:

[1] G. Liu, X. Wu, L. Zhao, T. Wu, G. Hu, R. Li, Y. Qiao, X. Wu, Soil water content in permafrost regions exhibited smaller interannual changes than non-permafrost regions during 1986–2016 on the Qinghai-Tibetan Plateau, CATENA 207 (2021) 105668.

[2] G. Liu, T. Wu, G. Hu, X. Wu, W. Li, Permafrost existence is closely associated with soil organic matter preservation: Evidence from relationships among environmental factors and soil carbon in a permafrost boundary area, CATENA 196 (2021) 104894.

[3] C. Li, Y. Wang, X. Wu, H. Cao, W. Li, T. Wu, Reducing human activity promotes environmental restoration in arid and semi-arid regions: A case study in Northwest China, Science of The Total Environment 768 (2021) 144525.

[4] C. Li, T. Dou, Y. Wang, T. Zhu, H. Yin, M. Zhou, L. Liu, X. Wu, A Method for Quantifying the Impacts of Human Activities on Net Primary Production of Grasslands in Northwest China, Remote Sensing 13(13) (2021) 2479.

[5] Y. Ding, C. Mu, T. Wu, G. Hu, D. Zou, D. Wang, W. Li, X. Wu, Increasing cryospheric hazards in a warming climate, Earth-Science Reviews 213 (2021) 103500.

[6] M. Xie, L. Zhao, X. Wu, L. Tian, G. Yue, H. Zhou, Z. Wu, Seasonal variations of nitrogen in permafrost-affected soils of the Qinghai-Tibetan Plateau, CATENA 195 (2020) 104793.

[7] D. Wang, X. Li, D. Zou, T. Wu, H. Xu, G. Hu, R. Li, Y. Ding, L. Zhao, W. Li, X. Wu, Modeling soil organic carbon spatial distribution for a complex terrain based on geographically weighted regression in the eastern Qinghai-Tibetan Plateau, Catena 187 (2020) 104399.

[8] C. Mu, B.W. Abbott, A.J. Norris, M. Mu, C. Fan, X. Chen, L. Jia, R. Yang, T. Zhang, K. Wang, X. Peng, Q. Wu, G. Guggenberger, X. Wu, The status and stability of permafrost carbon on the Tibetan Plateau, Earth-Science Reviews 211 (2020) 103433.

[9] C. Li, H. Sun, X. Wu, H. Han, An approach for improving soil water content for modeling net primary production on the Qinghai-Tibetan Plateau using Biome-BGC model, CATENA 184 (2020) 104253.

[10] 吴晓东, 吴通华, 多年冻土退化对气候和人类产生重要影响, 自然杂志 42(5) (2020) 425-431.

[11] G. Liu, X. Zhang, T. Wu, X. Wu, J.M. Smoak, X. Li, G. Ji, H. Xu, X. Ma, H. Li, G. Yue, Y. Ding, L. Zhao, X. Wu, Seasonal changes in labile organic matter as a function of environmental factors in a relict permafrost region on the Qinghai-Tibetan Plateau, Catena 180 (2019) 194-202.

[12] H.Y. Xu, G.M. Liu, X.D. Wu, J.M. Smoak, C.C. Mu, X.L. Ma, X.L. Zhang, H.Q. Li, G.L. Hu, Soil enzyme response to permafrost collapse in the Northern Qinghai-Tibetan Plateau, Ecological Indicators 85 (2018) 585-593.

[13] X.D. Wu, L. Zhao, G. Hu, G.M. Liu, W.P. Li, Y.J. Ding, Permafrost and land cover as controlling factors for light fraction organic matter on the southern Qinghai-Tibetan Plateau Science of the Total Environment 613-614 (2018) 1165-1174.

[14] X. Wu, L. Zhao, G. Liu, H. Xu, X. Zhang, Y. Ding, Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau, Applied Soil Ecology 128 (2018) 81-88.

[15] X. Wu, H. Xu, G. Liu, L. Zhao, C. Mu, Effects of permafrost collapse on soil bacterial communities in a wet meadow on the northern Qinghai-Tibetan Plateau, BMC Ecology 18(1) (2018) 27.

[16] C. Mu, L. Li, X. Wu, F. Zhang, L. Jia, Q. Zhao, T. Zhang, Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau, Scientific Reports 8(1) (2018) 4205.

[17] X. Ma, G. Liu, X. Wu, J.M. Smoak, L. Ye, H. Xu, L. Zhao, Y. Ding, Influence of land cover on riverine dissolved organic carbon concentrations and export in the Three Rivers Headwater Region of the Qinghai-Tibetan Plateau, Science of The Total Environment 630 (2018) 314-322.

[18] X.D. Wu, H.Y. Xu, G.M. Liu, X.L. Ma, C.C. Mu, L. Zhao, Bacterial communities in the upper soil layers in the permafrost regions on the Qinghai-Tibetan plateau, Applied Soil Ecology 120 (2017) 81-88.

[19] X. Wu, H. Fang, Y. Zhao, J.M. Smoak, W. Li, W. Shi, Y. Sheng, L. Zhao, Y. Ding, A conceptual model of the controlling factors of soil organic carbon and nitrogen densities in a permafrost-affected region on the eastern Qinghai-Tibetan Plateau, Journal of Geophysical Research: Biogeosciences 122(7) (2017) 1705-1717.

[20] Z. Wang, Q. Wang, X. Wu, L. Zhao, G. Yue, Z. Nan, P. Wang, S. Yi, D. Zou, Y. Qin, T. Wu, J. Shi, Vegetation changes in the permafrost regions of the Qinghai-Tibetan Plateau from 1982-2012: Different responses related to geographical locations and vegetation types in High-Altitude areas, PLoS One 12(1) (2017) e0169732.

[21] C.C. Mu, X.D. Wu, Q. Zhao, J.M. Smoak, Y.L. Yang, L.A. Hu, W. Zhong, G.M. Liu, H.Y. Xu, T.J. Zhang, Relict mountain permafrost area (Loess Plateau, China) exhibits high ecosystem respiration rates and accelerating rates in response to warming Journal of Geophysical Research: Biogeosciences 122(10) (2017) 2580-2592.

[22] C.C. Mu, B.W. Abbott, Q. Zhao, H. Su, S.F. Wang, Q.B. Wu, T.J. Zhang, X.D. Wu, Permafrost collapse shifts alpine tundra to a carbon source but reduces N2O and CH4 release on the northern Qinghai-Tibetan Plateau, Geophysical Research Letters 44(17) (2017) 8945-8952.

[23] C.C. Mu, B.W. Abbott, X.D. Wu, Q. Zhao, H.J. Wang, H. Su, S.F. Wang, T.G. Gao, X.Q. Peng, T.J. Zhang, Thaw depth determines dissolved organic carbon concentration and biodegradability on the northern Qinghai-Tibetan Plateau, Geophysical Research Letters 44(18) (2017) 9389-9399.

[24] C. Mu, T. Zhang, Q. Zhao, H. Su, S. Wang, B. Cao, X. Peng, Q. Wu, X. Wu, Permafrost affects carbon exchange and its response to experimental warming on the northern Qinghai-Tibetan Plateau, Agricultural and Forest Meteorology 247 (2017) 252-259.

[25] X. Wu, L. Zhao, H. Fang, Y. Zhao, J.M. Smoak, Q. Pang, Y. Ding, Environmental controls on soil organic carbon and nitrogen stocks in the high-altitude arid western Qinghai-Tibetan Plateau permafrost region, Journal of Geophysical Research: Biogeosciences 121(1) (2016) 176-187.

[26] W. Shang, X. Wu, L. Zhao, G. Yue, Y. Zhao, Y. Qiao, Y. Li, Seasonal variations in labile soil organic matter fractions in permafrost soils with different vegetation types in the central Qinghai–Tibet Plateau, Catena 137 (2016) 670-678.

[27] 叶琳琳, 吴晓东, 赵林, 青藏高原楚玛尔河碳素赋存形态初探, 环境科学与技术 39(7) (2016) 1-4.

[28] H. Xu, X. Wu, L. Zhao, Y. Zhao, T. Wu, G. Hu, W. Li, Y. Ding, Changes in soil enzyme activities under different vegetation types of the northern fringe of the permafrost regions in the Qinghai-Tibetan Plateau, Fresenius Environmental Bulletin 24(12c) (2015) 4720-4728.

[29] W. Li, L. Zhao, X. Wu, S. Wang, Y. Sheng, C. Ping, Y. Zhao, H. Fang, W. Shi, Soil distribution modeling using inductive learning in the eastern part of permafrost regions in Qinghai–Xizang (Tibetan) Plateau, CATENA 126 (2015) 98-104.

[30] X. Wu, D. He, G. Yang, C. Zhu, H. Jia, J. Hu, Seasonal variability of water quality and metazooplankton community structure in Xiaowan Reservoir of the upper Mekong River, Journal of Limnology 73(1) (2014) 167-176.

[31] X. Wu, H. Fang, L. Zhao, T. Wu, R. Li, Z. Ren, Q. Pang, Y. Ding, Mineralisation and changes in the fractions of soil organic matter in soils of the permafrost region, Qinghai-Tibet Plateau, China, Permafrost and Periglacial Processes 25(1) (2014) 35-44.

[32] G. Hu, H. Fang, G. Liu, L. Zhao, T. Wu, R. Li, X. Wu, Soil carbon and nitrogen in the active layers of the permafrost regions in the Three Rivers’ Headstream, Environ Earth Sci 72(12) (2014) 5113-5122.

[33] X. Wu, L. Zhao, T. Wu, J. Chen, Q. Pang, E. Du, H. Fang, Z. Wang, Y. Zhao, Y. Ding, Observation of CO2 degassing in Tianshuihai Lake Basin of the Qinghai-Tibetan Plateau, Environ Earth Sci 68(3) (2013) 865-870.

[34] X. Wu, L. Zhao, H. Fang, J. Chen, Q. Pang, Z. Wang, M. Chen, Y. Ding, Soil enzyme activities in permafrost regions of the western Qinghai-Tibetan Plateau, Soil Science Society of America Journal 76(4) (2012) 1280-1289.

[35] X. Wu, L. Zhao, M. Chen, H. Fang, G. Yue, J. Chen, Q. Pang, Z. Wang, Y. Ding, Soil organic carbon and its relationship to vegetation communities and soil properties in permafrost areas of the Central Western Qinghai-Tibet Plateau, China, Permafrost and Periglacial Processes 23(2) (2012) 162-169.

[36] X. Wu, F. Kong, M. Zhang, Photoinhibition of colonial and unicellular Microcystis cells in a summer bloom in Lake Taihu, Limnology 12(1) (2011) 55-61.

[37] X.-D. Wu, F.-X. Kong, Effect of Excess Light on Colony Size and Photosynthetic Quantum Yield of Microcystis spp. during a Summer Bloom, Journal of Freshwater Ecology 25(4) (2010) 507-516.

[38] X. Wu, F. Kong, Y. Chen, X. Qian, L. Zhang, Y. Yu, M. Zhang, P. Xing, Horizontal distribution and transport processes of bloom-forming Microcystis in a large shallow lake (Taihu, China), Limnologica - Ecology and Management of Inland Waters 40(1) (2010) 8-15.

[39] X. Wu, F. Kong, Effects of Light and Wind Speed on the Vertical Distribution of Microcystis aeruginosa Colonies of Different Sizes during a Summer Bloom, International Review of Hydrobiology 94(3) (2009) 258-266.

[40] L. Ye, X. Wu, D. Yan, B. Yang, T. Zhang, D. Huang, Dissolved organic carbon content is lower in warm seasons and neutral sugar composition indicates its degradation in a large subtropical river (Nantong Section), China, Environ Earth Sci 78(6) (2019) 213.

[41] L. Zhao, X. Wu, Z. Wang, Y. Sheng, H. Fang, Y. Zhao, G. Hu, W. Li, Q. Pang, J. Shi, B. Mo, Q. Wang, X. Ruan, X. Li, Y. Ding, Soil organic carbon and total nitrogen pools in permafrost zones of the Qinghai-Tibetan Plateau, Scientific Reports 8(1) (2018) 3656.

[42] 吴晓东, 孔繁翔, 张晓峰, 曾庆飞, 季健, 钱善勤, 太湖与巢湖水华蓝藻越冬和春季复苏的比较研究, 环境科学 29(5) (2008) 1313-1318.

[43] 吴晓东, 孔繁翔, 水华期间太湖梅梁湾微囊藻原位生长速率的测定, 中国环境科学 28(6) (2008) 552-555.

[44] 吴晓东, 孔繁翔, 曹焕生, 张民, 刘桂民, 赵巧华, 越冬浮游植物光合作用活性的原位研究, 湖泊科学 19(2) (2007) 139-145.

 

其他合作作者论文:

[1] L. Zhao, G. Hu, X. Wu, T. Wu, R. Li, Q. Pang, D. Zou, E. Du, X. Zhu, Dynamics and characteristics of soil temperature and moisture of active layer in the central Tibetan Plateau, Geoderma 400 (2021).

[2] S.-M. Zhang, C.-C. Mu, Z.-L. Li, W.-W. Dong, X.-Y. Wang, I. Streletskaya, V. Grebenets, S. Sokratov, A. Kizyakov, X.-D. Wu, Export of nutrients and suspended solids from major Arctic rivers and their response to permafrost degradation, Advances in Climate Change Research  (2021).

[3] S. Yang, R. Li, T. Wu, X. Wu, L. Zhao, G. Hu, X. Zhu, Y. Du, Y. Xiao, Y. Zhang, J. Ma, E. Du, J. Shi, Y. Qiao, Evaluation of soil thermal conductivity schemes incorporated into CLM5.0 in permafrost regions on the Tibetan Plateau, Geoderma 401 (2021) 115330.

[4] S.-Y. Xue, H.-Y. Xu, C.-C. Mu, T.-H. Wu, W.-P. Li, W.-X. Zhang, I. Streletskaya, V. Grebenets, S. Sokratov, A. Kizyakov, X.-D. Wu, Changes in different land cover areas and NDVI values in northern latitudes from 1982 to 2015, Advances in Climate Change Research  (2021).

[5] C. Wang, L. Zhao, H. Fang, L. Wang, Z. Xing, D. Zou, G. Hu, X. Wu, Y. Zhao, Y. Sheng, Q. Pang, E. Du, G. Liu, H. Yun, Mapping Surficial Soil Particle Size Fractions in Alpine Permafrost Regions of the Qinghai–Tibet Plateau, Remote Sensing 13(7) (2021).

[6] J. Ni, T. Wu, X. Zhu, X. Wu, Q. Pang, D. Zou, J. Chen, R. Li, G. Hu, Y. Du, J. Hao, X. Li, Y. Qiao, Risk assessment of potential thaw settlement hazard in the permafrost regions of Qinghai-Tibet Plateau, Science of The Total Environment 776 (2021) 145855.

[7] J. Ni, T. Wu, X. Zhu, G. Hu, D. Zou, X. Wu, R. Li, C. Xie, Y. Qiao, Q. Pang, Simulation of the present and future projection of permafrost on the QinghaiTibet Plateau with statistical and machine learning models, Journal of Geophysical Research: Atmospheres 126 (2021) e2020JD033402.

[8] W. Ma, T. Wu, X. Wu, G. Yue, R. Li, X. Li, X. Zhu, G. Hu, Y. Qiao, J. Hao, Warming could shift steppes to carbon sinks and meadows to carbon sources in permafrost regions: Evidence from the improved IBIS model, CATENA 200 (2021) 105168.

[9] Z.-L. Li, C.-C. Mu, X. Chen, X.-Y. Wang, W.-W. Dong, L. Jia, M. Mu, I. Streletskaya, V. Grebenets, S. Sokratov, A. Kizyakov, X.-D. Wu, Changes in net ecosystem exchange of CO2 in Arctic and their relationships with climate change during 2002–2017, Advances in Climate Change Research  (2021).

[10] X. Li, T. Wu, X. Wu, J. Chen, X. Zhu, G. Hu, R. Li, Y. Qiao, C. Yang, J. Hao, J. Ni, W. Ma, Assessing the simulated soil hydrothermal regime of the active layer from the Noah-MP land surface model (v1.1) in the permafrost regions of the Qinghai–Tibet Plateau, Geoscientific Model Development 14(3) (2021) 1753-1771.

[11] G. Hu, L. Zhao, T. Wu, X. Wu, H. Park, A. Fedorov, Y. Wei, R. Li, X. Zhu, Z. Sun, J. Ni, D. Zou, Spatiotemporal variations and regional differences in air temperature in the permafrost regions in the Northern Hemisphere during 1980–2018, Science of The Total Environment 791 (2021).

[12] S. Adiya, S. Dalantai, T. Wu, X. Wu, J. Yamkhin, Y. Bao, E. Sumiya, G. Yadamsuren, D. Avirmed, B. Dorjgotov, Spatial and temporal change patterns of near-surface CO2 and CH4 concentrations in different permafrost regions on the Mongolian Plateau from 2010 to 2017, Science of The Total Environment 800 (2021).

[13] 吴小丽, 刘桂民, 李新星, 纪庚好, 李莉莎, 毛楠, 徐海燕, 吴晓东, CCI多传感器组合土壤水分产品在青藏高原不同地区的适用性, 土壤 53(2) (2021) 429-438.

[14] 吴小丽, 刘桂民, 李新星, 纪庚好, 李莉莎, 毛楠, 徐海燕, 吴晓东, 青藏高原多年冻土和季节性冻土区土壤水分变化及其与降水的关系, 水文 41(1) (2021) 73-78.

[15] X. Zhu, T. Wu, G. Hu, S. Wang, X. Wu, R. Li, W. Wang, A. Wen, J. Ni, X. Li, J. Hao, Long-distance atmospheric moisture dominates water budget in permafrost regions of the Central Qinghai-Tibet plateau, Hydrological Processes n/a(n/a) (2020) 10.1002/hyp.13871.

[16] L. Zhao, D. Zou, G. Hu, E. Du, Q. Pang, Y. Xiao, R. Li, Y. Sheng, X. Wu, Z. Sun, L. Wang, C. Wang, L. Ma, H. Zhou, S. Liu, Changing climate and the permafrost environment on the Qinghai–Tibet (Xizang) plateau, Permafrost and Periglacial Processes 31(3) (2020) 396-405.

[17] L. Ye, X. Wu, D. Huang, Industrial Energy-Related CO2 emissions and their driving factors in the Yangtze River Economic Zone (China): An Extended LMDI analysis from 2008 to 2016, International Journal of Environmental Research and Public Health 17(16) (2020) 5880.

[18] M. Xie, L. Zhao, X. Wu, L. Tian, G. Yue, H. Zhou, Z. Wu, Seasonal variations of nitrogen in permafrost-affected soils of the Qinghai-Tibetan Plateau, CATENA 195 (2020) 104793.

[19] S. Liu, T. Wu, X. Wang, Changes in the global cryosphere and their impacts: A review and new perspective, Sciences in Cold and Arid Regions 12 (6) (2020) 343-354.

[20] X. Li, H. Jin, H. Wang, X. Wu, Y. Huang, R. He, D. Luo, X. Jin, Distributive features of soil carbon and nutrients in permafrost regions affected by forest fires in northern Da Xing’anling (Hinggan) Mountains, NE China, Catena 185 (2020) 104304.

[21] X. Jin, H. Jin, X. Wu, D. Luo, S. Yu, X. Li, R. He, Q. Wang, J.M.H. Knops, Permafrost degradation leads to biomass and species richness decreases on the Northeastern Qinghai-Tibet Plateau, Plants 9(11) (2020) 1453.

[22] G. Hu, L. Zhao, X. Zhu, X. Wu, T. Wu, R. Li, C. Xie, J. Hao, Review of algorithms and parameterizations to determine unfrozen water content in frozen soil, Geoderma 368 (2020) 114277.

[23] G. Hu, L. Zhao, R. Li, X. Wu, T. Wu, C. Xie, X. Zhu, J. Hao, Thermal properties of active layer in permafrost regions with different vegetation types on the Qinghai-Tibetan Plateau, Theoretical and Applied Climatology 139(3) (2020) 983-993.

[24] G. Hu, L. Zhao, R. Li, X. Wu, T. Wu, C. Xie, X. Zhu, J. Hao, Estimation of ground temperatures in permafrost regions of the Qinghai-Tibetan Plateau from climatic variables, Theoretical and Applied Climatology 140(3-4) (2020) 1081-1091.

[25] G. Hu, L. Zhao, R. Li, X. Wu, T. Wu, Q. Pang, G.y. Liu, C. Xie, A model for obtaining ground temperature from air temperature in permafrost regions on the Qinghai-Tibetan Plateau, CATENA 189 (2020) 104470.

[26] E. Du, L. Zhao, D. Zou, R. Li, Z. Wang, X. Wu, G. Hu, Y. Zhao, G. Liu, Z. Sun, Soil Moisture Calibration Equations for Active Layer GPR Detection—a Case Study Specially for the Qinghai–Tibet Plateau Permafrost Regions, Remote Sensing 12(4) (2020) 605.

[27] 王志伟, 岳广阳, 吴晓东, 张文, 王普昶, 宋雪莲, 吴佳海, 主动微波光谱影像对新疆天山山脉区域地表形变的监测研究, 光谱学与光谱分析 40(8) (2020) 2366.

[28] 李新星, 刘桂民, 吴小丽, 纪庚好, 李莉莎, 毛楠, 徐海燕, 吴晓东, 青藏高原东北部热融滑塌区土壤碳氮磷含量, 环境科学与技术 43(01) (2020) 37-44.

[29] 李新星, 刘桂民, 吴小丽, 纪庚好, 李莉莎, 毛楠, 徐海燕, 吴晓东, 马衔山不同海拔土壤碳、氮、磷含量及生态化学计量特征, 生态学杂志 39(3) (2020) 758-765.

[30] 郝君明, 吴通华, 李韧, 吴晓东, 谢昌卫, 朱小凡, 李旺平, 邹德富, 胡国杰, 杜二计, 青藏高原东北部青海玉树泥流滑坡特征和成因分析, 冰川冻土 42(2) (2020) 159-168.

[31] L. Zhao, G. Hu, D. Zou, X. Wu, L. Ma, Z. Sun, L. Yuan, H. Zhou, S. Liu, Permafrost changes and its effects on hydrological processes on Qinghai-Tibet Plateau, Bulletin of the Chinese Academy of Sciences 34(11) (2019) 133-1246.

[32] S.-H. Yi, B. Xiang, B.-P. Meng, X.-D. Wu, Y.-J. Ding, Modeling the carbon dynamics of alpine grassland in the Qinghai-Tibetan Plateau under scenarios of 1.5 and 2 °C global warming, Advances in Climate Change Research 10(2) (2019) 80-91.

[33] X. Wei, C. Huang, N. Wei, H. Zhao, Y. He, X. Wu, The impact of freeze–thaw cycles and soil moisture content at freezing on runoff and soil loss, Land Degradation & Development 30(5) (2019) 515-523.

[34] L. Tian, L. Zhao, X. Wu, G. Hu, H. Fang, Y. Zhao, Y. Sheng, J. Chen, J. Wu, W. Li, C.-L. Ping, Q. Pang, Y. Liu, W. Shi, T. Wu, X. Zhang, Variations in soil nutrient availability across Tibetan grassland from the 1980s to 2010s, Geoderma 338 (2019) 197-205.

[35] R. Li, L. Zhao, T. Wu, Q. Wang, Y. Ding, J. Yao, X. Wu, G. Hu, Y. Xiao, Y. Du, X. Zhu, Y. Qin, S. Yang, R. Bai, E. Du, G. Liu, D. Zou, Y. Qiao, J. Shi, Soil thermal conductivity and its influencing factors at the Tanggula permafrost region on the Qinghai–Tibet Plateau, Agricultural and Forest Meteorology 264 (2019) 235-246.

[36] C. Li, H. Sun, X. Wu, H. Han, Dataset of the net primary production on the Qinghai-Tibetan Plateau using a soil water content improved Biome-BGC model, Data in Brief 27 (2019) 104740.

[37] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, Y. Su, J. Hao, Evaluation of reanalysis air temperature products in permafrost regions on the Qinghai-Tibetan Plateau, Theoretical and Applied Climatology 138(3-4) (2019) 1457-1470.

[38] G. Hu, L. Zhao, R. Li, X. Wu, T. Wu, X. Zhu, Q. Pang, G.y. Liu, E. Du, D. Zou, J. Hao, W. Li, Simulation of land surface heat fluxes in permafrost regions on the Qinghai-Tibetan Plateau using CMIP5 models, Atmospheric Research 220 (2019) 155-168.

[39] G. Hu, L. Zhao, R. Li, X. Wu, T. Wu, C. Xie, X. Zhu, Y. Su, Variations in soil temperature from 1980 to 2015 in permafrost regions on the Qinghai-Tibetan Plateau based on observed and reanalysis products, Geoderma 337 (2019) 893-905.

[40] J. Hao, T. Wu, X. Wu, G. Hu, D. Zou, X. Zhu, L. Zhao, R. Li, C. Xie, J. Ni, S. Yang, X. Li, W. Ma, Investigation of a Small Landslide in the Qinghai-Tibet Plateau by InSAR and Absolute Deformation Model, Remote Sensing 11(18) (2019) 2126.

[41] G. Cheng, L. Zhao, R. Li, X. Wu, Y. Sheng, G. Hu, D. Zou, H. Jin, X. Li, Q. Wu, Characteristic, changes and impacts of permafrost on Qinghai-Tibet Plateau, Chinese Science Bulletion 64 (2019) 2783-2795.

[42] 赵林, 胡国杰, 邹德富, 吴晓东, 马露, 孙哲, 原黎明, 周华云, 刘世博, 青藏高原多年冻土变化对水文过程的影响, 中国科学院院刊 34(11) (2019) 1233-1246.

[43] 张晓兰, 刘桂民, 徐海燕, 李新星, 吴小丽, 纪庚好, 李莉莎, 吴晓东, 热融滑塌对青藏高原北麓河荒漠草原土壤细菌群落的影响, 应用与环境生物学报 25(6) (2019) 1135-1142.

[44] 张晓兰, 刘桂民, 李新星, 吴小丽, 徐海燕, 纪庚好, 李莉莎, 吴晓东, 青藏高原北麓河地区荒漠草原土壤细菌对热融滑塌的响应, 冰川冻土 41(4) (2019) 977-985.

[45] 倪杰, 吴通华, 赵林, 李韧, 谢昌卫, 吴晓东, 朱小凡, 杜宜臻, 杨成, 郝君明, 环北极多年冻土区碳循环研究进展与展望, 冰川冻土 41(4) (2019) 845-857.

[46] 程国栋, 赵林, 李韧, 吴晓东, 盛煜, 胡国杰, 邹德富, 金会军, 李新, 吴青柏, 青藏高原多年冻土特征、变化及影响, 科学通报 64 (2019) 2783-2795.

[47] T. Wu, Y. Qin, X. Wu, R. Li, D. Zou, C. Xie, Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai–Tibet Plateau from 1980 to 2013, Theoretical and Applied Climatology 132(3-4) (2018) 1187-1199.

[48] L. Tian, L. Zhao, X. Wu, H. Fang, Y. Zhao, G. Hu, G. Yue, Y. Sheng, J. Wu, J. Chen, Z. Wang, W. Li, D. Zou, C.L. Ping, W. Shang, Y. Zhao, G. Zhang, Soil moisture and texture primarily control the soil nutrient stoichiometry across the Tibetan grassland, Science of the Total Environment 622-623 (2018) 192-202.

[49] G. Hu, L. Tian, L. Zhao, X. Wu, R. Li, T. Wu, X. Zhu, E. Du, Z. Wang, J. Hao, W. Li, S. Wang, Soil infiltration processes of different underlying surfaces in the permafrost region on the Tibetan Plateau, Hydrological Sciences Journal 63(11) (2018) 1733-1744.

[50] 马小亮, 吴晓东, 叶琳琳, 徐海燕, 白炜, 胡广录, 刘桂民, 青藏高原腹地不同植被下河流溶解性有机碳特征, 环境科学与技术 41(9) (2018) 79-84.

[51] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰, 白炜, 青藏高原多年冻土区典型植被下河流溶解性有机碳的生物可利用性研究, 环境科学 39(5) (2018) 2086-2094.

[52] 马小亮, 刘桂民, 吴晓东, 徐海燕, 叶琳琳, 张晓兰, 三江源高寒草甸下溪流溶解性有机碳的季节性输移特征, 长江流域资源与环境 27(10) (2018) 2387-2394.

[53] D. Zou, L. Zhao, Y. Sheng, J. Chen, G. Hu, T. Wu, J. Wu, C. Xie, X. Wu, Q. Pang, W. Wang, E. Du, W. Li, G. Liu, J. Li, Y. Qin, Y. Qiao, Z. Wang, J. Shi, G. Cheng, A new map of permafrost distribution on the Tibetan Plateau, The Cryosphere 11(6) (2017) 2527-2542.

[54] L. Tian, L. Zhao, X. Wu, H. Fang, Y. Zhao, G. Yue, G. Liu, H. Chen, Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake, Science of Total Environment 607-608 (2017) 855-864.

[55] Y. Qin, T. Wu, L. Zhao, X. Wu, R. Li, C. Xie, Q. Pang, G. Hu, Y. Qiao, G. Zhao, G. Liu, X. Zhu, J. Hao, Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau, Journal of Geophysical Research: Atmospheres 122(21) (2017) 11604-11620.

[56] Y. Qin, T. Wu, X. Wu, R. Li, C. Xie, Y. Qiao, G. Hu, X. Zhu, W. Wang, W. Shang, Assessment of reanalysis soil moisture products in the permafrost regions of the central of the Qinghai-Tibet Plateau, Hydrological Processes 31(26) (2017) 4647-4659.

[57] G. Hu, L. Zhao, X. Wu, T. Wu, R. Li, C. Xie, Y. Xiao, Q. Pang, G. Liu, J. Hao, J. Shi, Y. Qiao, A mathematical investigation of the air-ground temperature relationship in permafrost regions on the Tibetan Plateau, Geoderma 306 (2017) 244-251.

[58] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, C. Xie, Q. Pang, D. Zou, Comparison of the thermal conductivity parameterizations for a freeze-thaw algorithm with a multi-layered soil in permafrost regions, Catena 156 (2017) 244-251.

[59] G. Hu, X. Wu, L. Zhao, R. Li, T. Wu, C. Xie, Q. Pang, G. Cheng, An improved model for soil surface temperature from air temperature in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China, Meteorology and Atmospheric Physics 129 (2017) 441-451.

[60] 赵林, 吴通华, 谢昌卫, 李韧, 吴晓东, 姚济敏, 岳广阳, 肖瑶, 多年冻土调查和监测为青藏高原地球科学研究、环境保护和工程建设提供科学支撑, 中国科学院院刊 32(10) (2017) 1159-1168.

[61] 叶琳琳, 吴晓东, 刘波, 闫德志, 赵力, 太湖西北湖区浮游植物和无机、有机氮的时空分布特征, 湖泊科学 29(4) (2017) 859-869.

[62] 特德·舒尔, 吴晓东, 赵林, 冻土融化影响气候100, 环球科学 (1) (2017) 80-85.

[63] 李红琴, 徐海燕, 马小亮, 胡广录, 吴晓东, 刘桂民, 马衔山多年冻土与季节冻土区土壤微生物量及酶活性的季节动态, 冰川冻土 39(2) (2017) 421-428.

[64] Z. Wang, Q. Wang, L. Zhao, X.-d. Wu, G. Yue, D. Zou, Z. Nan, G. Liu, Q. Pang, H. Fang, T. Wu, J. Shi, K. Jiao, Y. Zhao, L. Zhang, Mapping the vegetation distribution of the permafrost zone on the Qinghai-Tibet Plateau, Journal of Mountain Science 13(6) (2016) 1035-1046.

[65] R. Li, L. Zhao, T. Wu, X. Wu, Y. Xiao, Y. Du, Y. Qin, The impacts of net long-wave radiation on the surface soil thermal regimes over the Qinghai–Tibetan Plateau, China, Environ Earth Sci 75(3) (2016) 271.

[66] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, C. Xie, Y. Qiao, J. Shi, W. Li, G. Cheng, New Fourier-series-based analytical solution to the conduction–convection equation to calculate soil temperature, determine soil thermal properties, or estimate water flux, International Journal of Heat and Mass Transfer 95 (2016) 815-823.

[67] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, C. Xie, Y. Qiao, J. Shi, G. Cheng, An analytical model for estimating soil temperature profiles on the Qinghai-Tibet Plateau of China, Journal of Arid Land 8(2) (2016) 232-240.

[68] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, C. Xie, Y. Qiao, G. Cheng, Comparison of different soil temperature algorithms in permafrost regions of Qinghai-Xizang (Tibet) Plateau of China, Cold Regions Science and Technology 130 (2016) 1-7.

[69] E. Du, L. Zhao, T. Wu, R. Li, G. Yue, X. Wu, W. Li, Y. Jiao, G. Hu, Y. Qiao, Z. Wang, D. Zou, G. Liu, The relationship between the ground surface layer permittivity and active-layer thawing depth in a Qinghai–Tibetan Plateau permafrost area, Cold Regions Science and Technology 126 (2016) 55-60.

[70] J. Chen, L. Zhao, Y. Sheng, J. Li, X. Wu, E. Du, G. Liu, Q. Pang, Some characteristics of permafrost and its distribution in the Gaize area on the Qinghai-Tibet Plateau, China, Arctic, Antarctic, and Alpine Research 48(2) (2016) 395-409.

[71] 叶琳琳, 吴晓东, 赵冬悦, 周芮, 唐旭廉, 朱倩雯, 张繁宇, 刘波, 闫德智, 崇明岛河网浮游植物和无机、有机氮的时空分布特征, 湖泊科学 28(3) (2016) 528-536.

[72] 叶琳琳, 吴晓东, 闫德志, 刘波, 太湖西北湖区表层水体颗粒态有机碳含量的季节变化及其来源解析 环境科学学报 37(4) (2016) 1323-1329.

[73] 王志伟, 吴晓东, 岳广阳, 赵林, 王茜, 南卓铜, 秦彧, 吴通华, 史健宗, 基于光谱反演的青藏高原1982年到2014年植被生长趋势分析, 光谱学与光谱分析 36(2) (2016) 471-477.

[74] L. Ye, X. Wu, B. Liu, D. Yan, F. Kong, Dynamics and sources of dissolved organic carbon during phytoplankton bloom in hypereutrophic Lake Taihu (China), Limnologica - Ecology and Management of Inland Waters 54 (2015) 5-13.

[75] W. Shang, L. Zhao, X. Wu, Y. Li, G. Yue, Y. Zhao, Y. Qiao, Soil organic matter fractions under different vegetation types in permafrost regions along the Qinghai-Tibet Highway, north of Kunlun Mountains, China, Journal of Mountain Science 12(4) (2015) 1010-1024.

[76] G. Hu, L. Zhao, X. Wu, R. Li, T. Wu, C. Xie, Q. Pang, Y. Xiao, W. Li, Y. Qiao, J. Shi, Modeling permafrost properties in the Qinghai-Xizang (Tibet) Plateau, Science China Earth Sciences 58(12) (2015) 2309-2326.

[77] G. Hu, L. Zhao, R. Li, T. Wu, X. Wu, Q. Pang, Y. Xiao, Y. Qiao, J. Shi, Modeling hydrothermal transfer processes in permafrost regions of Qinghai-Tibet Plateau in China, Chinese Geographical Science 25(6) (2015) 713-727.

[78] H. Fang, L. Zhao, X. Wu, Y. Zhao, Y. Zhao, G. Hu, Soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau, China, Journal of Mountain Science 12(6) (2015) 1448-1459.

[79] 邹德富, 赵林, 吴通华, 吴晓东, 庞强强, 乔永平, 王志伟, MODIS地表温度产品在青藏高原连续多年冻土区的适用性分析, 冰川冻土 37(2) (2015) 308-317.

[80] 叶琳琳, 吴晓东, 刘波, 闫德智, 张玫琪, 周阳, 巢湖溶解性有机物时空分布规律及其影响因素, 环境科学 36(9) (2015) 3186-3193.

[81] 叶琳琳, 吴晓东, 孔繁翔, 刘波, 闫德智, 太湖入湖河流溶解性有机碳来源及碳水化合物生物可利用性, 环境科学 36(3) (2015) 914-921.

[82] 李旺平, 赵林, 吴晓东, 赵拥华, 方红兵, 石伟, 青藏高原多年冻土区土壤-景观模型与土壤分布制图, 科学通报 60(23) (2015) 2216-2226.

[83] D. Zou, L. Zhao, T. Wu, X. Wu, Q. Pang, Z. Wang, Modeling ground surface temperature by means of remote sensing data in high-altitude areas: test in the central Tibetan Plateau with application of moderate-resolution imaging spectroradiometer Terra/Aqua land surface temperature and ground-based infrared radiometer, APPRES 8(1) (2014) 083516-083516.

[84] W. Li, L. Zhao, X. Wu, S. Wang, Z. Nan, H. Fang, W. Shi, Distribution of soils and landform relationships in permafrost regions of the Western Qinghai-Xizang (Tibetan) Plateau, China, Soil Science 179(7) (2014) 348-357.

[85] 胡国杰, 赵林, 李韧, 吴通华, 庞强强, 吴晓东, 乔永平, 史健宗, 青藏高原多年冻土区土壤冻融期间水热运移特征分析, 土壤 46(2) (2014) 355-360.

[86] 王志伟, 史健宗, 岳广阳, 赵林, 南卓铜, 吴晓东, 乔永平, 吴通华, 邹德福, 玉树地区融合决策树方法的面向对象植被分类, 草业学报 22(5) (2013) 62-71.

[87] L. Ye, X. Shi, X. Wu, F. Kong, Nitrate limitation and accumulation of dissolved organic carbon during a spring-summer cyanobacterial bloom in Lake Taihu (China), Journal of Limnology 71(1) (2012).

[88] F. Chen, M. Chen, F. Kong, X. Wu, Q.L. Wu, Species-dependent effects of crustacean plankton on a microbial community, assessed using an enclosure experiment in Lake Taihu, China, Limnology and Oceanography 57(6) (2012) 1711-1720.

[89] 叶琳琳, 史小丽, 张民, 吴晓东, 孔繁翔, 巢湖夏季水华期间水体中溶解性碳水化合物的研究, 中国环境科学 32(2) (2012) 318-323.

[90] 叶琳琳, 史小丽, 吴晓东, 于洋, 张民, 孔繁翔, 太湖浮游植物细胞裂解速率的酯酶活性法初步研究, 湖泊科学 24(5) (2012) 712-716.

[91] L. Ye, X. Shi, X. Wu, M. Zhang, Y. Yu, D. Li, F. Kong, Dynamics of dissolved organic carbon after a cyanobacterial bloom in hypereutrophic Lake Taihu (China), Limnologica - Ecology and Management of Inland Waters 41(4) (2011) 382-388.

[92] L. Ye, X. Shi, X. Wu, F. Kong, Phytoplankton Cell lysis after water bloom in a eutrophic freshwater Lake Taihu (China), International Review of Hydrobiology 96(6) (2011) 709-719.

[93] X. Wu, F. Kong, M. Zhang, Photoinhibition of colonial and unicellular Microcystis cells in a summer bloom in Lake Taihu, Limnology 12(1) (2011) 55-61.

[94] 叶琳琳, 史小丽, 吴晓东, 李大命, 于洋, 孔繁翔, 西太湖秋季蓝藻水华过后细胞裂解对溶解性有机碳影响, 中国环境科学 31(1) (2011) 131-136.

[95] Q.F. Zeng, F.X. Kong, X. Tan, X.D. Wu, Variations and relationships of stable isotope composition in size-fractionated particulate organic matter, Polish Journal of Environmental Studies 19(6) (2010) 1361-1367.

[96] L. Ye, X. Wu, X. Tan, X. Shi, D. Li, Y. Yu, M. Zhang, F. Kong, Cell Lysis of Cyanobacteria and Its Implications for Nutrient Dynamics, International Review of Hydrobiology 95(3) (2010) 235-245.

[97] 叶琳琳, 吴晓东, 于洋, 孔繁翔, 太湖不同湖区蓝藻细胞裂解速率的空间差异, 环境科学学报 30(6) (2010) 1302-1311.

[98] 黄佳聪, 吴晓东, 高俊峰, 孔繁翔, 蓝藻水华预报模型及基于遗传算法的参数优化, 生态学报 30(4) (2010) 1003-1010.

[99] X. Wu, F. Kong, Effects of Light and Wind Speed on the Vertical Distribution of Microcystis aeruginosa Colonies of Different Sizes during a Summer Bloom, International Review of Hydrobiology 94(3) (2009) 258-266.

[100] 孔繁翔, 马荣华, 高俊峰, 吴晓东, 太湖蓝藻水华的预防、预测和预警的理论与实践, 湖泊科学 21(3) (2009) 314-328.

[101] 季健, 孔繁翔, 于洋, 张民, 阳振, 钱善勤, 吴晓东, 太湖越冬蓝藻空间分布的初步研究, 湖泊科学 21(4) (2009) 490-494.

[102] M. Zhang, F. Kong, X. Wu, P. Xing, Different photochemical responses of phytoplankters from the large shallow Taihu Lake of subtropical China in relation to light and mixing, Hydrobiologia 603(1) (2008) 267-278.

[103] Q.F. Zeng, F.X. Kong, E.L. Zhang, X. Tan, X.D. Wu, Seasonality of stable carbon and nitrogen isotopes within the pelagic food web of Taihu Lake, Annales De Limnologie-International Journal of Limnology 44(1) (2008) 1-6.

[104] 邢鹏, 孔繁翔, 陈开宁, 陈美军, 吴晓东, 生态修复水生植物根际氨氧化细菌的研究, 环境科学 29(8) (2008) 2154-2159.


wxd.jpg